Bruno Latour

portrait_-_bruno_latour

  • His early work had done more than that of any other living thinker to unsettle the traditional understanding of how we acquire knowledge of what’s real
  • In a series of controversial books in the 1970s and 1980s, he argued that scientific facts should instead be seen as a product of scientific inquiry. Facts, Latour said, were “networked”;  they stood or fell not on the strength of their inherent veracity but on the strength of the institutions and practices that produced them and made them intelligible. If this network broke down, the facts would go with them.
  • Founder of the new academic discipline of science and technology studies
  • The mid-1990s were the years of the so-called science wars, a series of heated public debates between “realists,” who held that facts were objective and free-standing, and “social constructionists,” like Latour. If scientific knowledge was socially produced — and thus partial, fallible, contingent — how could that not weaken its claims on reality?  Lately, however, these debates have begun to look more like a prelude to the post-truth era in which society as a whole is presently condemned to live.
  • By showing that scientific facts are the product of all-too-human procedures, these critics charge, Latour — whether he intended to or not — gave license to a pernicious anything-goes relativism that cynical conservatives were only too happy to appropriate for their own ends (…) But Latour believes that if the climate skeptics and other junk scientists have made anything clear, it’s that the traditional image of facts was never sustainable to begin with.
  • With the rise of alternative facts, it has become clear that whether or not a statement is believed depends far less on its veracity than on the conditions of its “construction” — that is, who is making it, to whom it’s being addressed and from which institutions it emerges and is made visible. 
  • In Abidjan, Latour began to wonder what it would look like to study scientific knowledge not as a cognitive process but as an embodied cultural practice enabled by instruments, machinery and specific historical conditions.
  • Day-to-day research — what he termed science in the making — appeared not so much as a stepwise progression toward rational truth as a disorderly mass of stray observations, inconclusive results and fledgling explanations (…) During the process of arguing over uncertain data, scientists foregrounded the reality that they were, in some essential sense, always speaking for the facts; and yet, as soon as their propositions were turned into indisputable statements and peer-reviewed papers — what Latour called ready-made science — they claimed that such facts had always spoken for themselves.
  • In the 1980s, Latour helped to develop and advocate for a new approach to sociological research called Actor-Network Theory (…) Latour had seen how an apparently weak and isolated item — a scientific instrument, a scrap of paper, a photograph, a bacterial culture — could acquire enormous power because of the complicated network of other items, known as actors, that were mobilized around it. The more socially “networked” a fact was (the more people and things involved in its production), the more effectively it could refute its less-plausible alternatives.
  • Latour believes that if scientists were transparent about how science really functions — as a process in which people, politics, institutions, peer review and so forth all play their parts — they would be in a stronger position to convince people of their claims
  • Whether they are conscious of this epistemological shift, it is becoming increasingly common to hear scientists characterize their discipline as a “social enterprise” and to point to the strength of their scientific track record, their labors of consensus building and the credible reputations of their researchers.

Excerpts from: Bruno Latour, the Post-Truth Philosopher, Mounts a Defense of Science, By Ava Kofman published in New York Times, full article available here

Image available here

Networked Learning

NETWORK LEARNING

The network is a network of people: networked learning aims to understand social learning processes by asking how people develop and maintain a ‘web’ of social relations used for their learning and development (de Laat)

Networked learning does not necessarily involve ICT, though in specific cases it may make use of technology. What makes learning networked is the connection to and engagement with other people across different social positions inside and outside of a given institution.  The network is supportive of a person’s learning through the access it provides to other people’s ideas and ways of participating in practice as well as of course through the opportunity to discuss these ideas and ways of participating and to potentially develop nuanced, common perspectives (Carvalho and Goodyear)

Networked learning may utilize ICT but it might me also supported by other means such as physical artefacts or artistic stimulation of senses and feelings while connections may also be drawn spontaneously by the learners themselves (Bober & Hynes)

The network is a network of situations or contexts: connections between the diverse contexts in which the learners participate as significant for understanding learning beyond online learning spaces, and, indeed, within them as well. This is the sense in which the network, under-stood as a network of situations, supports learning: by offering tacit knowledge, perspectives and ways of acting from known situations for re-situated use in new ones. Networked Learning’ on this under-standing is the learning arising from the connections drawn between situations and from the resituated use in new situations of knowledge, perspectives and ways of acting from known ones (Dohn)

The ‘network’ is one of ICT infrastructure, enabling connections across space and time: The support for learning provided by the network is one of infrastructure, i.e. the ease of saving, transporting and retrieving content for future use. Learning, it would seem, will be ‘networked’ whenever it is ICT-mediated, by that very fact; perhaps with the proviso that the situations of learning should indeed be separated in space and/or time so that the infrastructure (the ‘network’) is actually brought into play. This proviso would differentiate the field of networked learning somewhat from the field of Computer Supported Collaborative Learning (CSCL), where many studies concern ICT-facilitated group work between physically co-located students. The re-search field of Networked Learning is characterized, not only by focusing on ‘networks’, but also by taking a certain approach to learning, focusing critically on aspects of democratization and empowerment (Czerniewicz and Lee)

The ‘network’ is one of actants: consisting of both human and non-human agents in symmetrical relationship to each other. It is a systemic approach to learning, where individual learners’ interaction and learning may be analyzed as a result of socio-material entanglement with objects and other people. The network supports learning in the sense that any learning is in fact the result of concrete socio-material entanglement of physical, virtual, and human actants (Wright and Parchoma; Jones)

 

References

Bonderup Dohn, N., Sime, J-A., Cranmer, S., Ryberg, T., & de Laat, M. (2018). Reflections and challenges in Networked Learning. In N. Bonderup Dohn, S. Cranmer, J-A. Sime, M. de Laat, & T. Ryberg (Eds.), Networked Learning – reflections and challenges (pp. 187-212). Switzerland: Springer. Research in Networked Learning,
DOI: https://doi.org/10.1007/978-3-319-74857-3_11

Image available here

Critical Pedagogy, new book by Sean Michael Morris & Jesse Stommel

URGENCY OF TEACHERS

Critical Pedagogy is an approach to teaching and learning predicated on fostering agency and empowering learners (implicitly and explicitly critiquing oppressive power structures). The word “critical” in Critical Pedagogy functions in several registers:

  • Critical, as in mission-critical, essential;
  • Critical, as in literary criticism and critique, providing definitions and interpretation;
  • Critical, as in reflective and nuanced thinking about a subject;
  • Critical, as in criticizing institutional, corporate, or societal impediments to learning;
  • Critical Pedagogy, as a disciplinary approach, which inflects (and is inflected by) each of these other meanings.

Our work, the writers say, has wondered at the extent to which Critical Pedagogy translates into digital space.

In short, Critical Digital Pedagogy:

  • centers its practice on community and collaboration;
  • must remain open to diverse, international voices, and thus requires invention to re-imagine the ways that communication and collaboration happen across cultural and political boundaries;
  • will not, cannot, be defined by a single voice but must gather together a cacophony of voices;
  • must have use and application outside traditional institutions of education.

 

Preface by Audrey Watters. Book available for online reading here

The capability approach

CAPABILITY APPROACH

The capability approach to a person’s advantage is concerned with evaluating it in terms of his or her actual ability to achieve various valuable functionings* a part of living

It differs from other approaches using other informational focuses, for example:

  • personal utility
  • absolute or relative opulence
  • assessments of negative freedoms
  • comparisons of means of freedom
  • comparisons of resource holdings as a basis of just equality

The capability approach is concerned primarily with the identification of value-objects, and sees the evaluative space in terms of functionings and capabilities to function (…) Choices have to be faced in the delineation of the relevant functionings. The format always permits additional ‘achievements’ to be defined and included (…) There is no escape from the problem of evaluation in selecting a class of functionings in the description and appraisal of capabilities (…) (1) What are the objects of value? (2) How
valuable are the respective objects? the identification of the objects of value is
substantively the primary exercise which makes it possible to pursue the second question (…) The identification of the objects of value specifies what may be called an evaluative space (…) The selection of the evaluative space has a good deal of cutting power on its own, both because of what it includes as potentially valuable and because of what it excludes (…) The freedom to lead different types of life is reflected in the person’s capability set.  The capability of a person depends on a variety of factors, including personal characteristics and social arrangements. A full accounting of individual freedom must, of course, go beyond the capabilities of personal living and pay attention to the person’s other objectives, but human capabilities constitute an important part of individual freedom (…) We can make a fourfold classification of points of evaluative interest in assessing human advantage, based on two different distinctions. One distinction is between (1.1) the promotion of the person’s well-being, and (1.2) the pursuit of the person’s overall agency goals (…) The second distinction is between (2.1) achievement, and (2.2) the freedom to achieve (…) The assessment of each of these four types of benefit involves an evaluative exercise, but they are not the same evaluative exercise (…0 The four categories of intrapersonal assessment and interpersonal comparison that follow from these two distinctions (namely, well-being achievement, well-being freedom, agency achievement, and agency freedom) are related to each other, but are not identical

*functionings represent parts of the state of a person–in particular the various things that he or she manages to do or be in leading a life. The capability of a person reflects the alternative combinations of functionings the person can achieve, and from which he or she can choose one collections

Excerpts from Amartyr Sen’s Capability and Well‐Being, full paper available here

Image available here

Leverage Points: Places to Intervene in a System, by Donella Meadows

SYSTEM AS CAUSE

PLACES TO INTERVENE IN A SYSTEM (in increasing order of effectiveness)

12. Constants, parameters, numbers (such as subsidies, taxes, standards): even though they rarely change behavior

11. The sizes of buffers and other stabilizing stocks, relative to their flows: they are usually physical entities, not easy to change

10. The structure of material stocks and flows (such as transport networks, population age structures): they only way to fix a system is to rebuild it, but physical rebuilding is the slowest and most expensive kind of change

9. The lengths of delays, relative to the rate of system change: a system just can’t respond to short-term changes when it has long-term delays,a  delay in feedback is critical relative to rates of change in the stocks that the feedback loop is trying to control. it;s easier to slow down the change rate

8. The strength of negative feedback loops, relative to the impacts they are trying to correct against: one of the biggest mistakes is that we drastically narrow the range of conditions over which the system can survive, the strength of a negative loop is important relative to the impact it is designed to correct (self-correcting) 

7. The gain around driving positive feedback loops: a system with an unchecked positive loop ultimately will destroy itself (self-reinforcing). reducing the gain around a positive loop -slowing the growth- is usually a more powerful leverage point

6. The structure of information flows (who does and does not have access to information): missing feedback is one of the most common causes of system malfunction. adding or restoring information can be a powerful intervention, usually much easier and cheaper than rebuilding physical infrastructure

5. The rules of the system (such as incentives, punishments, constraints): as we try to imagine restructured rules like that and what our behavior would be under them, we come to understand the power of rules. power over the rules is real power

4. The power to add, change, evolve, or self-organize system structureSelf-organization means changing any aspect of a system lower on this list — adding completely new physical structures, such as brains or wings or computers — adding new negative or positive loops, or new rules. the ability to self-organize is the strongest form of system resilience. 

3. The goals of the system the goal of a system is a leverage point superior to the self-organizing ability of a system. even people within systems don’t often recognize what whole-system goal they are serving

2. The mindset or paradigm out of which the system — its goals, structure, rules, delays, parameters — arisesthe shared idea in the minds of society, the great big unstated assumptions — unstated because unnecessary to state; everyone already knows them — constitute that society’s paradigm, or deepest set of beliefs about how the world works (Kuhn: keep pointing at the anomalies and failures in the old paradigm, you keep coming yourself, and loudly and with assurance from the new one, you insert people with the new paradigm in places of public visibility and power. You don’t waste time with reactionaries; rather you work with active change agents and with the vast middle ground of people who are open-minded.)

1. The power to transcend paradigms: that is to keep oneself unattached in the arena of paradigms, to stay flexible, to realize that NO paradigm is “true,” that every one, including the one that sweetly shapes your own worldview, is a tremendously limited understanding of an immense and amazing universe that is far beyond human comprehension

Full article available here/ Image available here

Seymour Papert’s Constructionism

2016-1470251392

the N word as opposed to the V word–shares constructivism’s connotation of learning as “building knowledge structures” irrespective of the circumstances of the learning. It then adds the idea that this happens especially felicitously in a context where the learner is consciously engaged in constructing a public entity, whether it’s a sand castle on the beach or a theory of the universe (Papert, 1991)

Seymour, says Idit Harel in his obituary, coined the term to advance a new theory of learning, claiming that children learn best when they:

  1. use tech-empowered learning tools and computational environments,
  2. take active roles of designers and builders; and
  3. do it in a social setting, with helpful mentors and coaches, or over networks.

Influencers:  John Dewey, Maria Montessori, and Paulo Freire, Jean Piaget with whom he worked in 1958 to 1963 in Switzerland.

He was also responsible for the academic work for  Logo programming language. He created the Logo Turtle, which was a physical turtle, and later became a virtual turtle which could be manipulated on screen by using the simple Logo programming language. MIT’s Epistemology and Learning Group, which Papert founded, has created many advanced technologies for learners including: robotics, system dynamics, multi-agent modeling, and digital fabrication. In 1985, he began a long and productive collaboration with the LEGO company, one of the first and largest corporate sponsors of the Media Lab. In the late 1990s, Papert moved to Maine and continued his work with young people there, establishing the Learning Barn and the Seymour Papert Institute in 1999

References

  1. Papert, S., Harel, I., 1991. Situating Constructionism, Ablex Publishing Corporation, 1st chapter retrieved here: http://edutechwiki.unige.ch/en/Constructionism (last accessed 09.08.2018)
  2. Harel, I., 2016.  A Glimpse Into the Playful World of Seymour Papert. (obituary), IN EdSurge, 3rd August 2016, full text available here
  3. http://edutechwiki.unige.ch/en/Constructionism
  4. http://idtoolbox.eseryel.com/seymour-paperts–constructionism.html
  5. http://news.mit.edu/2016/seymour-papert-pioneer-of-constructionist-learning-dies-0801

Image available here

Dewey’s notion of experience

loffit_john-dewey_07

John Dewey

One important contributor to the development of pragmatism was John Dewey (1859–1952), whose philosophical interests spanned many areas, including psychology, education, ethics, logic and politics (…) Dewey’s pragmatism examines how the use of different ideas and hypotheses, concepts and theories affects the result of inquiry (…) One common misunderstanding is when educationalists associate pragmatism with ‘learning by doing’ or as mere ‘trial and error’ as this view separates action from thinking in turn preventing learning in an informed way (…) Dewey worked all his life on refining his notion of experience and defined it first as interactional and later as a transactional concept (…) Experience is the concept Dewey used to denote the relation between subject and worlds as well as between action and thinking, between human existence and becoming knowledgeable about selves and the worlds of which they are a part (…) This is why Dewey prefers the term ‘organic circle’ rather than ‘reflex arc’ as a metaphor for the relation between being and knowing (…) experience is a series of connected organic circles, it is transaction, and it is the continuous relation between subject and worlds. Experience is an understanding of the subject as being in the world, not outside and looking into the world, as a spectator theory of knowledge would imply

Five differences between a commonplace interpretation of experience and his own views:

  • experience is usually used as an epistemological concept (purpose is production) while for Dewey is an ontological one and it is based on the transactional relation between subject and worlds. (remember difference of enjoying a painting because of its aesthetic value or studying it as an art reviewer) There are no experiences without some form of knowing but it does not solely depend on conscious thinking.
  • experience is traditionally understood as an inner mental and subjective relation and thus trapped in in the privacy of subjects’ action and thinking. There is no experience without a subject experiencing it but it does not mean that experiencing is solely subjective and private.
  • Third, experience is traditionally viewed in the past tense, the given rather
    than the experimental and future oriented. Dewey’s concept of experience,
    on the contrary, is characterized by reaching forward towards the unknown.
  • experience is traditionally viewed as isolated and specific rather than as continuous and connected. For Dewey, however, experience is a series of connected situations (organic circles) and even if all situations are connected to other situations, every situation has its own unique character.
  • Finally, experience has traditionally been viewed as beyond logical reasoning.
    Dewey argued, however, that there is no conscious experience without this
    kind of reasoning. Anticipatory thinking and reflection is always present in
    conscious experience by way of theories and concepts, ideas and hypotheses

By on the one hand stressing that experience is not primarily an epistemological matter, and on the other hand claiming that the systematic process of knowledge is one form of experience, Dewey wanted to show how inquiry is the only method for having an experience. Inquiry is triggered by difficult situations, and inquiry is the means through which it is possible to transform these situations through the mediation of thinking and action.Further, experience and inquiry are not limited to what is mental and private. (Elkjaer, 2009)

Traditional concept of experience v Dewey’s concept of experience
Experience as knowledge/Knowledge as a subset of experience
Experience as subjective/ Experience as both subjective and objective
Experience as oriented to the past/ Experience as future oriented (consequence)
Experience as isolated experiences/Experience as united experiences
Experience as action/ Experience as encompassing theories and concepts and as such a foundation for knowledge

References

Elkjaer, B., 2009. Pragmatism: A learning theory for the future. In Contemporary Theories of Learning Learning theorists … in their own words, Knud Illeris (ed.), London & New York: Routledge, pp. 74-89

Image available here