Review on “critiques of the CE” paper

Based on an extensive literature review the paper brings together critiques on circular economy. Following list covers some of them.

  • concept vagueness
  • conflicts and trade offs are often overlooked
  • collection of heterogeneous scientific and semi-scientific concepts
  • mostly developed by practitioners
  • conceptual fragmentation and lack of paradigmatic strength
  • not a theory but an emerging approach
  • in its multiplicity it provides with a new framing but there is increased scrutiny to its operationalization
  • cyclical systems also consume resources, create waste and emissions
  • complexity of waste: recycling markets are unpredictable
  • difficulty in connecting waste streams to production
  • waste a resource increases waste
  • emphasis on manufacturing flows rather than stocks/ stock is overlooked
  • global south is excluded
  • actual enactments are limited
  • circular business models can only be validated when products are recirculated and resold
  • lack of means to measure circularity of business models
  • circular innovation is hard to scale up
  • customers are lacking awareness
  • lack of consumer interest is a common problem for green offerings
  • issues of power remain underplayed on who’s to gain from turning circular
  • it revolves around a relatively small fraction of materials in the global throughput
  • it is uncertain on what level circular products can actually substitute for conventional linear products
  • having relied mostly on engineering and natural sciences, circular economy shows a neglect of the social pillar
  • it is not a socially or political neutral system: societal benefits of a new circular model should be established in a more fundamental and sound manner than just traditional cost-benefit analysis
  • the expectation that the individual consumer will be able to mobilize large scale change is unrealistic
  • potential gains from recycling are eaten up by increased consumption
  • risk of increased polarization between city and country and that the countryside is left out with poorer access to welfare services as a result

Sounds harsh, but most of it is true. Problem with some of this critique is that it examines CE within the linear economy paradigm. Criteria against which CE is contested here are based on either the clash of CE with existing models (ie waste stream management) or the strongly embedded modernist consumer(ist) habits. These can not possibly change overnight. Absence of the social pillar is pretty accurate though, as well as the asymmetry to CE implementation between the Global North and Global South. Which brings us perhaps to the most important point made in the paper, the acknowledgement that CE is not politically neutral. And unless CE is recognized for its political and (may I add) ethical stance, its implementation will always be lacking and the social pillar will always be suppressed.

References

Corvellec H, Stowell A, Johansson N. Critiques of the circular economy. J Ind Ecol. 2021; 1–12.
https://doi.org/10.1111/jiec.13187 available here: https://onlinelibrary.wiley.com/doi/10.1111/jiec.13187?af=R

Circular Building Products ProfEd, starts March 31!

So excited that our ProfEd Circular Building Products for a Sustainable Built Environment is up for a second run, starting on March 31! Watch our new teaser video to see what the course is about and who else is involved.

For more information and registrations please visit: https://online-learning.tudelft.nl/courses/circular-building-products-for-a-sustainable-built-environment/

Looking forward to working with you in turning your product into a circular one!


Big thanks to Peter Van Assche (@PrettyPlactic), Casper van der Meer (BetterFutureFactory), Olaf Blaauw, Laura Rosen Jacobson (@Buurman), Martijn Veerman (@Alkondor) & Monique Fledderman (@VMGR). And thanks to @HansdeJonge from @Oculus for the great work in making this video!

All Watched Over by Machines of Loving Grace

Image available here

Just watched 2011 Adam Curtis 3-episode BBC series under this title of a poem by Richard Brautigan. I strongly recommend that you watch this documentary (link available here); Adam Curtis is a master at creating consistent narratives (remember ‘the century of the Self’). In the meantime, here is the poem the series owe its name to, dedicated to all my friends the cyberneticists.

I like to think (and
the sooner the better!)
of a cybernetic meadow
where mammals and computers
live together in mutually
programming harmony
like pure water
touching clear sky.

I like to think
(right now, please!)
of a cybernetic forest
filled with pines and electronics
where deer stroll peacefully
past computers
as if they were flowers
with spinning blossoms.

I like to think
(it has to be!)
of a cybernetic ecology
where we are free of our labors
and joined back to nature,
returned to our mammal
brothers and sisters,
and all watched over
by machines of loving grace.

“Circular Building Products for a Sustainable Built Environment” Profed Course, launches October 7.

A new, fully online Profed course on Circular Economy at an advanced level will be available by TU Delft, October 7. Come join us at the “Circular Building Products for a Sustainable Built Environment” online course, register now and enhance your learning on Circular Economy.

The course is suitable for architects, product designers, managers, supply chain actors and other professionals working towards the development of future products used to create sustainable, circular buildings. TU Delft’s Circular Built Environment hub (CBE) has designed and developed this course working with leading industry and research partners, to achieve a higher level of applicability and relevance. It is based on real world case studies and provides you with the tools to create new products and business models. It will help you to fully understand the complexity of the task and to be able to evaluate existing circular approaches. You won’t be alone: a group of highly qualified people will support your learning throughout the course. For more information please visit our page.

https://online-learning.tudelft.nl/courses/circular-building-products-for-a-sustainable-built-environment/

Design after Design

I have just read Jeremy Till’s Design after Design lecture and it is so inspiring.

Till discusses the ‘modern project’ using the principles of progress (“If the modern project is underpinned by the need to maintain progress on all fronts, then design is used as a messenger for that urge“), growth (“the modern project is only deemed credibly progressive on the back of markers of growth“), order (“The modern project was, and still is, a project of ordering and categorising, and with it a project of excluding and privileging“) and reason (“the application of rational thought to a given context in order to better it“) and how they are currently challenged by climate change. The modern project, he claims, does not respond to ethics. It will only address its own demise. Climate emergency also defies reason and the scientific method.

So, what about design then? “What we see,” says Till, “is a radical shift from design being attached and addicted to the production of the new, and into practices that pay attention to what comes before the object and what comes after it.” Design now “accommodates difference,” it is “a collective enterprise of sense-making,” it is “sensitive to systems of production, both material and human.”

Full article available here

TU Delft MOOC: Circularity in the Built Environment is open again at edx!

After a very successful second re-run, our MOOC has been launched again last Monday! This is a self-paced MOOC, so you can start any time and also follow it in your own time. If you are a student, a working professional in the field of architecture, urban design and engineering and you want to know more about the circular economy, join the course and the instructors from our department will guide you through.

 About this course

Building construction is one of the most waste producing sectors. In the European Union, construction alone accounts for approximately 30% of the raw material input. In addition, the different life-cycle stages of buildings, from construction to end-of-life, cause a significant environmental impact related to energy consumption, waste generation and direct and indirect greenhouse gas emissions.

The Circular Economy model offers guidelines and principles for promoting more sustainable building construction and reducing the impact on our environment. If you are interested in taking your first steps in transitioning to a more sustainable manner of construction, then this course is for you!

In this course you will become familiar with circularity as a systemic, multi-disciplinary approach, concerned with the different scale, from material to product, building, city, and region.

Some aspects of circularity that will be included in this course are maximizing reuse and recycle levels by closing the material loops. You will also learn how the Circular Economy can help to realign business incentives in supply chains, and how consumers can be engaged and contribute to the transition through new business models enabling circular design, reuse, repair, remanufacturing and recycling of building components.

In addition, you will learn how architecture and urban design can be adapted according to the principles of the Circular Economy and ensure that construction is more sustainable. You will also learn from case studies how companies already profitably incorporate this new theory into the design, construction and operation of the built environment.

               What you’ll learn

At the end of the course you will be able to:

  • Recognize the principles of circularity and their application to the built environment
  • Identify the scales of the built environment from materials and products to cities and regions
  • Identify the life-cycle phases of building products and how they can be circular
  • Discuss design principles in building of products and key aspects such as stakeholders, incentives, time-frames, business models
  • Discuss the circular design and development approach for buildings and recognize the impact of a building on society and the environment during its life-cycle
  • Recognize the flows at different city scales and how they differ depending on the actors and the local context
  • Reflect on the complexity and variety of possible circular solutions in terms of energy, water and waste management
  • Analyze and map the different stages and value webs of building materials at the regional level
  • Reflect on possible environmental impacts of the different building life-cycle stages and activities along the value web
  • Explore the potential of intervening to steer the value web towards more circularity

You can start learning all about the circular economy by clicking this link right now! Also, if you are interested in the work that is going on in the field of circularity, have a look at the Circular Built Environment Hub.

What does an ecologically sensitive and socially just CE look like? (Part Two)

An equitable, Inclusive, and Environmentally Sound CE Open Forum, May 13, 2020

Patrick Schroder, Promoting a Just Transition to an Inclusive CE, Clatham House (Report): The ‘just’ transition concept is not new; it comes from climate change and climate justice movements (…) many social and political issues have been neglected in planning for the CE transition (…) a just transition framework for the CE can identify opportunities that reduce waste and stimulate product innovation (…) low- and middle-income countries that rely heavily on ‘linear’ sectors and the export of these commodities to higher-income countries are likely to be negatively affected by the shift to circularity (…) there is a need for new international cooperation programmes and a global mechanism to mobilise dedicated support funds for countries in need (…) COVID19 has shown that global emergencies have fast forwarded processes that otherwise may take years (…) three points: a. CE is necessary for both long-term resource security and short-term supplies of important materials, b. there is a need to improve the working conditions of the informal CE (waste pickers etc) and c. global supply chains will be radically changed (…)

What does an ecologically sensitive and socially just CE look like? (Part One)

An equitable, Inclusive, and Environmentally Sound CE Open Forum, May 13, 2020

Cindy Isenhour, Department of Anthropology, Climate Change Institute, University of Maine | CRITIQUE I: CE cannot be just about efficiency and technological improvement alone within the confines of a global economic system (…) in fact, success of CE has been hindered in part by carbon leakage to developing countries, off-shorial waste or by other means of shifting environmental burdens and market externalities (…) for some critics, high levels of total material throughput emissions and consumption have cannibalised a great deal of the gains (…) evidence that CE has helped us to decouple growth from environmental degradation is sadly hard to come by still (…) critics claim that despite CE success is not solely dependent on regenerative design (new packaging materials, industrial symbiosis, nutrient cycling technologies or recyclable polymers), but it is also about a fundamental shift, in global societal organisation and cultural frameworks (…) these have the power to renegotiate the meaning of ownership-property-economic value on materials and how we measure the successor our economic system (…) Can CE be capable of cultural change?| CRITIQUE II: CE scholarship is focused on rational choice theory and ecological modernisation and based on cost-benefit analyses (…) however, economic decision-making is highly contextual and social (…) consumers don’t want to alienate themselves from their peer groups and their neighbours (…) there is a necessity of coordinated approaches and collective action between social actors, so as to build trust and possibility of collaboration (…) How do we implement a CE that recognises the sociality of the economy? | CRITIQUE III: CE represents a new commodity frontier (…) sustainability programming can often capture the resources for those segments of society that are already more fortunate leading to economic exclusion (…) How can we broaden participation in CE as well as its conceptualisation and operationalisation to ensure equity and justice?

Investigating culture in LCAs

Image available here

(…) one could argue that culture is integrally tied into the notion of environmental sustainability (UNESCO 2009) given that human beings (and the societies within which they exist) have a relationship with the natural environment that transcends biophysical definitions (…) Chan et al. (2012b) argue that to value cultures entirely in economic terms “cannot reflect the full extent of their differences from other ecosystem services” and risks the unintended interpretation that different cultures can be bought or sold (…) There are a few examples of tools specifically designed to assess only cultural values (…) However, Alonso and Medici (2012) emphasise that the lack of assessment tools that specifically include cultural aspects alongside environmental, economic and social aspects directly contributes to the marginalisation of culture, particularly regarding development policies (…) “values are the building blocks of culture” (…) the notion of ‘value’ is arguably just as ambiguous as ‘culture’ (…) The role of values in the process of undertaking LCA studies has been recognised in relation to defining the problem, goal and scope; the selection of impact category indicators; the optional weighting element at impact assessment; and interpretation of results (…) values have an important—if largely unrecognised—role to play in influencing these choices about the inclusion of different processes on the basis that they are judged as more or less relevant to the decision situation (…) Accounting for differences in cultural perspectives will, in theory, help to “establish the seriousness” of environmental impacts (…) “broadening LCA towards social, cultural and economic aspects would move LCA from environmental towards sustainability assessments” (…) future research should focus on opportunities for the development of (a) a culturally inclusive LCSA process and (b) additional cultural indicators and/or dimensions of existing LCSA indicators that represent cultural values (…) Presenting decision makers with information about economic, social, environmental and cultural aspects will allow them to simultaneously consider a range of impacts associated with a given process

Pizzirani et al, 2014

References

Pizzirani, S., McLaren, S. & Seadon, J. (2014). Is there a place for culture in life cycle sustainability assessment? The International Journal of Life Cycle Assessment 19, 1316–1330, DOI: 10.1007/s11367-014-0722-5

The Amsterdam City Doughnut

 The Amsterdam city portrait was created by Doughnut Economics Action Lab, in collaboration with Biomimicry 3.8, Circle Economy, and C40. Photograph: Doughnut Economics Action Lab/ Image available here

The Amsterdam City Doughnut is intended as a stimulus for cross-departmental collaboration within the City, and for connecting a wide network of city actors in an iterative process of change, as set out in the eight ‘M’s: mirror/ mission/ mobilize/ map/ mindset/ momentum/ monitor/ mmm!

Image available here

The Doughnut’s ecological ceiling comprises nine planetary boundaries: ozone layer depletion/ climate change/ ocean acidification/ chemical pollution/ nitrogen & phosphorus loading/ freshwater withdrawals/ land conversion/ biodiversity loss/ air pollution in order to identify Earth’s critical life-supporting systems and the global limits of pressure that they can endure.

The classic image of the Doughnut; the extent to which boundaries are transgressed and social foundations are met are not visible on this diagram. Graphic via Wikipedia.com/ Image available here

The inner ring of her donut sets out the minimum we need to lead a good life, derived from the UN’s sustainable development goals and agreed by world leaders of every political stripe. It ranges from food and clean water to a certain level of housing, sanitation, energy, education, healthcare, gender equality, income and political voice. Anyone not attaining such minimum standards is living in the doughnut’s hole. The outer ring of the doughnut, where the sprinkles go, represents the ecological ceiling drawn up by earth-system scientists. It highlights the boundaries across which human kind should not go to avoid damaging the climate, soils, oceans, the ozone layer, freshwater and abundant biodiversity.

Between the social foundation and the ecological ceiling lies a doughnut-shaped space in which it is possible to meet the needs of all people within the means of the living planet – an ecologically safe and socially just space in which humanity can thrive (…) The Doughnut’s social foundation, which is derived from the social priorities in the UN Sustainable Development Goals, sets out the minimum standard of living to which every human being has a claim. No one should be left in the hole in the middle of the Doughnut, falling short on the essentials of life, ranging from food and water to gender equality and having political voice.

The scheme was based on the concept of doughnut economics as explained in 2017 Kate Raworth’s book: “Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist.” Raworth, who is part of the team responsible for this initiative commented: “Who would expect in a portrait of the city of Amsterdam that you would include labour rights in west Africa? And that is the value of the tool.”

References

The Amsterdam City Doughnut, full report available here

Amsterdam to embrace ‘doughnut’ model to mend post-coronavirus economy, full article on Guardian available here

LCA-LCI-LCIA according to EN ISO 14040:2006

Image available here

Life Cycle Assessment (LCA) can assist in:
identifying opportunities to improve the environmental performance of products at various points in their life cycle
informing decision-makers in industry, government or non-government organizations (e.g. for the purpose of strategic planning, priority setting, product or process design or redesign),
the selection of relevant indicators of environmental performance, including measurement techniques, and
marketing (e.g. implementing an eco-labelling scheme, making an environmental claim, or producing an environmental product declaration).

There are four phases in an LCA study:
a) the goal and scope definition phase: The scope, including the system boundary and level of detail, of an LCA depends on the subject and the intended use of the study. The depth and the breadth of LCA can differ considerably depending on the goal of a particular LCA.
b) the inventory analysis phase: The life cycle inventory analysis phase (LCI phase) is the second phase of LCA. It is an inventory of input/output data with regard to the system being studied. It involves collection of the data necessary to meet the goals of the defined study
c) the impact assessment phase: The life cycle impact assessment phase (LCIA) is the third phase of the LCA. The purpose of LCIA is to provide additional information to help assess a product system’s LCI results so as to better understand their environmental significance.
d) the interpretation phase: Life cycle interpretation is the final phase of the LCA procedure, in which the results of an LCI or an LCIA, or both, are summarized and discussed as a basis for conclusions, recommendations and decision-making in accordance with the goal and scope definition.

EN ISO 14040: 2006 available here

Notes from Peder Anker’s ‘The closed world of ecological architecture’

Whole World Catalogue Magazine, editor Stewart Brand, a firm believer in colonizing space. The image of Earth as seen form outer space allowed the ability to it as a whole. Image available here

astronauts’ cabins as models for environmentally responsible landscape design and architecture/ space colonization has been the underlying ethic/ living in harmony with Earth’s ecosystem became a question of adopting space technologies, analytical tools and ways of living/ their aim was to escape industrial society/ life in a future ecologically designed world was focused on biological survival at the expense of wider cultural, aesthetic and social values of the humanist legacy/ their work was based on diagrams of energy flows as input and output circuits in a cybernetic ecosystem/ construction of self-efficient closed ecological systems within submarines and underground bomb shelters/ the turn towards space ecology emerged in the late 1960s and early 1970s in the light of of alarming reports such as The Population Bomb (Paul Elrich, 1968) and Limits to Growth (Club of Rome, 1972) reinforced by the 1973-1974 Arab oil embargo/ a way of designing which fed on its own ideas and gradually closed itself off from developments in the rest of the architectural community. Its followers sense of self-sufficiency resulted in a sect-design for the believers whose recycling of resources and ideas led to a lack of interest in an outside world simply described as ‘industrial’ and thus not worth listening to:

ecological design is inspired by a biologically informed vision of humankind embedded in an Arcadian dream of building in harmony with nature

Chermayeff/ Alexander, Community and Privacy (1963): advocated for self contained ecological capsules, ecologically autonomous buildings to stop exploitation of natural resources/destruction of natural scenery. Buckminster Fuller, Operating Manual for Spaceship Earth (1969): cabin ecology as a model for understanding life on earth/ Earth as a huge mechanical ship travelling in space/ Doxiadis, Ecumenopolis: humanity was heading towards a universal city/ Ian Mc Harg, Design with Nature (1969): science-based modernist architecture and planning with respect for nature/ ecological crisis was caused by reckless laissez-faire economy, industrialization, greed chaotic urbanization, social structures fragmentation and lack of planning/ he pointed to the holistic ecology of the ‘Orient’, human would build and settle in a space buoy located between the Moon and the Earth/ one should make an ecosystem inventory of an environment, investigating its changing processes and then attribute values to the ecological aspects and determine a. what changes would be permitted and prohibited and b. identify indicators of stability and instability/ (influenced by) John Phillips, Ecology in Design issue of Via Journal (1968): holistic approach to architects and region planners/ they ought to include all forms of life in their designs/ John Todd & William McLarney, New Alchemy Institute and From Eco-Cities to Living Machines: Principles of Ecological Design (1980/ 1984/1994): how to survive an impeding catastrophe, closed ecological life boats that would keep afloat/ New Alchemists aimed at solar-heated and wind-powered greenhouse-aquaculture buildings/ Grumman Corporation, Grumman Lunar Module (1960s): they also developed other household system prototypes: a waste disposal system inspired by space recirculation technology, a sewage system inspired by the astronaut’s lavatory, and an energy efficiency system for homes that incorporated solar cells/ Lockheed Missiles and Space Company in California also developed related technology/ Integral Urban House (1972)/ BioShelter/ Alexander Pike: austerity in place of plenty/ his aim was to use ambient solar and wind energy, to reduce energy requirements, and to utilise human household and waste material/ Brenda &Robert Vale, Autonomous House, a shelter for the coming doom/ Kenneth Yeang: by imitating processes in nature, architects could find new environmentally friendly designs for human life/ biological analogies for optimum survival/ a building was to be sealed off both environmentally and culturally from industrialism/ Phil Haws, Biosphere 2 in Arizona (completed in 1991): the first fully enclosed ecosystem, tested for a period of over a year

Grumman Lunar Module. Image available here

Anker, P. (2005). The closed world of ecological architecture. In Journal of Architecture, Vol. 10, no.5. DOI: 10.1080/13602360500463230