Notes from Peder Anker’s ‘The closed world of ecological architecture’

Whole World Catalogue Magazine, editor Stewart Brand, a firm believer in colonizing space. The image of Earth as seen form outer space allowed the ability to it as a whole. Image available here

astronauts’ cabins as models for environmentally responsible landscape design and architecture/ space colonization has been the underlying ethic/ living in harmony with Earth’s ecosystem became a question of adopting space technologies, analytical tools and ways of living/ their aim was to escape industrial society/ life in a future ecologically designed world was focused on biological survival at the expense of wider cultural, aesthetic and social values of the humanist legacy/ their work was based on diagrams of energy flows as input and output circuits in a cybernetic ecosystem/ construction of self-efficient closed ecological systems within submarines and underground bomb shelters/ the turn towards space ecology emerged in the late 1960s and early 1970s in the light of of alarming reports such as The Population Bomb (Paul Elrich, 1968) and Limits to Growth (Club of Rome, 1972) reinforced by the 1973-1974 Arab oil embargo/ a way of designing which fed on its own ideas and gradually closed itself off
from developments in the rest of the architectural community. Its followers sense of self-sufficiency resulted in a sect-design for the believers whose
recycling of resources and ideas led to a lack of interest in an outside world simply described as ‘industrial’ and thus not worth listening to

ecological design is inspired by a biologically informed vision of humankind embedded in an Arcadian dream of building in harmony with nature

Chermayeff/ Alexander, Community and Privacy (1963): advocated for self contained ecological capsules, ecologically autonomous buildings to stop exploitation of natural resources/destruction of natural scenery. Buckminster Fuller, Operating Manual for Spaceship Earth (1969): cabin ecology as a model for understanding life on earth/ Earth as a huge mechanical ship travelling in space/ Doxiadis, Ecumenopolis: humanity was heading towards a universal city/ Ian Mc Harg, Design with Nature (1969): science-based modernist architecture and planning with respect for nature/ ecological crisis was caused by reckless laissez-faire economy, industrialization, greed chaotic urbanization, social structures fragmentation and lack of planning/ he pointed to the holistic ecology of the ‘Orient’, human would build and settle in a space buoy located between the Moon and the Earth/ one should make an ecosystem inventory of an environment, investigating its changing processes and then attribute values to the ecological aspects and determine a. what changes would be permitted and prohibited and b. identify indicators of stability and instability/ (influenced by) John Phillips, Ecology in Design issue of Via Journal (1968): holistic approach to architects and region planners/ they ought to include all forms of life in their designs/ John Todd & William McLarney, New Alchemy Institute and From Eco-Cities to Living Machines: Principles of Ecological Design (1980/ 1984/1994): how to survive an impeding catastrophe, closed ecological life boats that would keep afloat/ New Alchemists aimed at solar-heated and wind-powered greenhouse-aquaculture buildings/ Grumman Corporation, Grumman Lunar Module (1960s): they also developed other household system prototypes: a waste disposal system inspired by space recirculation technology, a sewage system inspired by the astronaut’s lavatory, and an energy efficiency system for homes that incorporated solar cells/ Lockheed Missiles and Space Company in California also developed related technology/ Integral Urban House (1972)/ BioShelter/ Alexander Pike: austerity in place of plenty/ his aim was to use ambient solar and wind energy, to reduce energy requirements, and to utilise human household and waste material/ Brenda &Robert Vale, Autonomous House, a shelter for the coming doom/ Kenneth Yeang: by imitating processes in nature, architects could find new environmentally
friendly designs for human life/ biological analogies for optimum survival/ a building was to be sealed off both environmentally and culturally from industrialism/ Phil Haws, Biosphere 2 in Arizona (completed in 1991): the first fully enclosed ecosystem, tested for a period of over a year

Grumman Lunar Module. Image available here

Anker, P. (2005). The closed world of ecological architecture. In Journal of Architecture, Vol. 10, no.5. DOI: 10.1080/13602360500463230

Schoonschip Amsterdam

Image available here

Schoonschip (space&matter) consists of a total of 30 water plots, with 46 unique water dwellings for more than 100 residents (…) Each separate house is insulated and equipped with solar panels. Water pumps extract heat from the water in the canal to heat the homes. There is only one connection to the national energy grid, through which residents of Schoonschip trade their generated solar power. Each home has a battery which stores the energy surplus. Waste water from toilets and showers is treated separately and converted back into energy. Many homes also have a green roof, where residents can grow their own food (…) Schoonschip is not only sustainable in an ecological sense, but also socially: the residents work closely together to realize their residential area and coordinate their plans. They have agreed to renounce their personal cars and instead share electric cars together. The group also made a conscious search for diversity in the composition of residents. On that note, there are two ‘kangaroo houses’ in Schoonschip, where two households live together on one boat. Meanwhile, the houses are connected by a ‘smart jetty’ that serves as a pavement and meeting place (…) The district is connected with a smart grid, which is linked to a blockchain. With their own crypto coin – the Jouliette – the Schoonschip residents can trade the solar power that they generate with the neighbourhood’s 500 solar panels. They can also pay with it in other places around the Buiksloterham area, such as the cafe and restaurant at De Ceuvel, a circularity incubator which Space&Matter also initiated, developed and designed.

Image available here

Denmark's plan for going circular

Image available here

In September 2016 the government launched a Utilities Strategy promoting, among others, better utilisation of waste. Thus, the Utilities Strategy constitutes a key contribution to creating a more circular economy. The Strategy for Circular Economy, therefore, must be seen in close correlation with – and as a follow-up to – the Utilities Strategy (…) the government has decided to expose waste incineration and management of recyclable waste to competition (…) local authorities must put out for tender their household waste suitable for incineration (…) this way all parties have equal access to the waste (…) the in its Utilities Strategy the government has proposed a full competition exposure for the treatment of recyclable waste streams.

In regard to CE there are six areas of effort: 1. Strengthen enterprises as a driving force for circular transition/ 2. Support CE through data and digitization/ 3. Promote CE through design/ 4. Change consumption patterns through CE/ 5. Create a proper functioning market for waste and recycled raw materials/ 6. Get more value out of buildings and biomass

Category 3. Promote CE through design in particular, entails 2 of the 16 initiatives taken: a. incorporating circular economy into product policy and b. boosting Danish participation in European work on circular standards:

The design of products is crucial for the transition to a circular economy, since choices in the design phase of, e.g., materials and chemicals are decisive for the lifetime of the product, and whether components and materials can be used again with a high value (…) The eco-labels (Nordic Swan & EU flower) thereby make it easier for consumers, enterprises, and public authorities to purchase in a circular manner thereby contributing to a market-driven transition to a more circular economy.

An enhanced Danish effort in this standardisation work will make it possible to communicate knowledge from the European working groups on standards for circular economy to Danish enterprises who may be interested in having influence on the standardisation work.

Category 6 is also related to the construction industry through initiatives 13 & 14:

The building sector is challenged by a relatively high consumption of new raw materials for the production of construction materials and contents of substances of concern in buildings. The limited traceability of construction materials deteriorates the opportunities for recycling and reuse of high value. The embedded energy for new buildings can constitute up to 50 percent of the energy consumption over the entire life of the building. Today, no requirements are made for including construction materials’ so-called “embedded energy” – i.e. the sum of all energy used for production and waste management – in buildings’ energy calculation. If at some point of time an international building passport is developed, it will give better opportunities for the recycling of construction materials and a reduction of costs for maintenance and renovation.

Already today enterprises have an obligation to source-separate their waste so it can be recycled. But far from all enterprises comply with the rules. In fast and relatively unplanned demolitions construction materials are often mixed, which makes it difficult to separate the valuable parts of the waste. It also increases the risk that substances of concern are recycled or recovered instead of being managed safely in a landfill. Where existing rules focus on recycling, so-called “selective demolition” leads to a higher focus on the reuse of construction materials.

The Danish Government: Strategy for Circular Economy: More Value and Better Environment through Design, Consumption and Recycling, September 2018. Full Report available here

Rehabilitation as reconciliation

Delfgauwse Weije in Delft (regeneration plans: Hank van Schagen), image available here

Rehabilitation refers to developing new architectural designs which are coherent with the existing architecture. The analysis of the design is primarily concerned with the required program changes, ie. the construction of the shell. But it is also concerned with the changes which have to be made in the way in which buildings connect with their surroundings. If the design aims to accept the past then you have to develop a positive relationship between the old and the new, and illustrate the continuity between them. In that case we are not rejecting what exists, instead we see it as a necessary step towards the future. It is an attempt at reconciliation. Two moments of creativity touch -they can coexist (…) Rehabilitation respects the history of the use of a building; if changes are required then these are based on the continuity of the architecture. That is transformation without alienation.

Lecture by Henk van Schagen for Delft Design, 7 October 2004. Retrieved from Hielkje Zijlstra, Analysing Buildings from Context to Detail in Time: ABCD Research Method, IOS Press (2009)

Martin Cherry’s statements for listing 20th century buildings

Link to Amazon

There is a misconception that listing freezes buildings. Changes have taken place. We have to be concerned about managing change rather than fossilising buildings. It is an inherently flexible system which flags the architectural and historic character of buildings in order to ensure that it is fully taken into account when changes of demolition are proposed (…) it does not necessarily mean that a building must be preserved whatever it costs (…)

opposition to listing revolves around four principal premises: statutory protection unreasonable erodes private property rights; listing is inherently anti-democratic; it inhibits much-needed development; the fear of terminal decline and the creation of a museum culture (…)

protection of recent buildings raises further issues: objectivity and distance (cooling off period); public perceptions; understanding of historic buildings; intrinsic character and use of materials; economic viability; listing affects building value; procedures needed interests of the owner and the wide community; listing does not occur when there are proposals for change (…)

Ingredients in a successful conservation policy are: the selection of buildings is safe and sound based on rigorous research and that designation is appropriate; public support must be secured through debate and education; planning environment must facilitate sound management and reduce unnecessary delay and uncertainty.

Cherry, M.(1996). Listing twenty-century buildings: the present situation, in Susan M. Macdonald (Ed.), Modern Matters. Principles and Practice in Conserving Recent Architecture, 7-14